第三百四十七章 王氏函数、舆论沸腾;重赏之下、必有勇夫!(1 / 7)
有关丁志强的讨论也只是个插曲而已。
当王浩对于函数进行了深入解释,所有人才把注意力放在黑板上的复杂函数上。
“和质数分布相关?”
“以黎曼函数和四次方程推导出来的……”
“肯定有其特殊性?”
在场每个人都对于数学有深入的研究,而以数学家的眼光来看,黑板上的函数确实非常丑陋。
数学家们都喜欢欣赏数学的美,同时也认为宇宙中的一切,所蕴含的数学规律都是美轮美奂的。
数学的美,要理解其实也很简单。
举个例子就能明白了。
比如,x(立方+y(立方=1,这个方程就蕴含着数学的美,不管是方程所对应的平面几何图形,或者虚数界表达对应的代数几何图形,都是具有四周对称性的。
这种对应图形的美,也反映出方程本身很有研究价值。
数学家们可以对方程进行不断的变化,来得到另外的图形,或者是其他东西。
再来分析另外一个方程:5x(平方+9y(立方+439=947。
这个方程依然是二元三次方程,但显然。就很难说具备‘美’的特性了。
同样是二元三次方程,它所对应的几何图形,和前者相比‘美的程度’就要差太多了,同时也带来了另外一个问题,方程很难做其他的变换。
换句话说,不止缺少了数学的美,研究的难度也呈现指数型上升。
问题就在这里。
当王浩得到了结论以后,他就感觉函数并不具备数学的美,后来才看到丁志强以后,他又想到了素数分布问题。
素数,有‘美’的规律呢?
很难说。
最少在已知的范围内,即便是能找到素数的规律,规律本身也远谈不上数学的美。
他已经能确定函数肯定蕴含着什么奥秘,而且也肯定和素数分布有关,最少也能达到黎曼猜想级别。
即便不具备数学的美,又怎么样?